Choose your screen resolution: Auto adjust 800x600 1024x768


Aplicatii ale integralei definite
Scris de mihaiela lazar   
Sâmbătă, 15 Februarie 2020 16:21

APLICAȚII ALE INTEGRALEI DEFINITE

Prof. Opriș Brișcan Maria,

Liceul Tehnologic,,C-tin Brâncuși” Oradea

În lucrarea de față mă voi referi la o parte din aplicațiile integralei definite și anume la calculul ariilor unor suprafețe plane și volumelor unor corpuri neregulate.

La geometrie în gimnaziu am învățat să calculăm ariile și perimetrele diferitelor suprafețe plane regulate cum ar fi pătratul,triunghiul,cercul, etc dar și volumele unor corpuri de rotație: cilindrul, conul, sfera etc. Există suprafețe și corpuri neregulate ale căror arii și volume le calculăm cu ajutorul integralelor definite studiate în manualul de ,,Analiză Matematică, în clasa a XII-a.

Cuvinte cheie: arie, suprafețe plane, integrală definită, volume, corpuri de rotație.

Aria unei suprafețe plane

Noțiuni teoretice:

Fie funcția f:[a,b]R continuă și pozitivă.Suprafața mărginită de graficul funcției f ,axa Ox și dreptele de ecuații x=a, x=b se numește subgraficul lui f și aria lui se calculează cu formula: Aria(=

Dacă f,g:[a,b]R sunt continue și f(x)g(x) atunci aria suprafeței cuprinsă între graficele celor două funcții se calculează după formula:

Aria()=

Studiem câteva exemple:

1) Fie funcția f:[0,1] R f(x)=.Cum funcția este pozitivă , aria subgraficului lui f este;

Aria()=)dx=( =+2020

2) f:[e,] R f(x)=xlnx este o funcție pozitivă , prin urmare aria subgraficului lui f ,aplicând formula de integrare prin părți și facând toate calculele este:

Aria()= xlnx)dx=(lnx-) =

3) f:[-3,2]R f(x)=

Aria(=+)dx=

=(+(=

4) Fie funcțiile f,g:[0,2]R f(x)= și g(x)=2x-. Calculăm aria cuprinsă între graficele celor două funcții:

y




Aria()




x

Aria()=)dx=(2=

5) Considerăm funcțiile f,g:[0,2]R f(x)= , g(x)=x+1

y




Aria()

x

Aria()=)dx=() =

6)Se consideră funcția f:RR f(x)=-3m+4mx-3, unde m este un număr real nenul.Aflați m pentru care aria suprafeței plane determinată de graficul funcției,axa Ox și dreptele de ecuații x=0, x=1 să fie maximă.

Aria()=-3m+4mx-3)dx=(-=-+2m-3

Această expresie este de gradul doi și este maximă pentru m=1

7)Fie funcția f:[0,∞)R f(x)=. Aflați numărul a, 0 astfel încât aria suprafeței plane determinată de graficul funcției f, axa Ox și dreptele de ecuații x=0, x=a să fie egală cu 1-.

Aria()=)dx=ln(x+2)-=ln(a+2)--ln2=ln-

Egalăm rezultatul obținut cu 1- ,iar după calcule rezultă a=2e-2

Volumul unui corp de rotație

Noțiuni teoretice:

Fie f:[a,b] o funcție continuă.Se numește corp de rotație corpul obținut prin rotirea subgraficului funcției f în jurul axei Ox și are volumul dat de formula:

V(

Vom studia câteva exemple:

1) Se dă funcția f:[0,1] f(x)= . Calculavolumul corpului generat de rotirea subgraficului lui f în jurul axei Ox.

Așadar V(=dx===

[=

y

V(




x




z

2)Calculați volumul corpului obținut prin rotirea subfraficului funcției f:[2,3] f(x)= în jurul axei Ox.

V(====+=

3)Se dă funcția f:[0,4] f(x)= .Aflați a astfel încât V( obținut prin rotirea subgraficului lui f în jurul axei Ox să fie egal cu 32

V(==8

Egalăm rezultatul obținut cu 32 și din rszolvarea ecuației rezultă a=2

4)Fie f:[0,1] f(x)= . Se cere volumul corpului obținut prin rotirea subgraficului lui f în jurul axei Ox.

V((x+=(1=

5)Se consideră funcția f:RR f(x)=3x+5 unde a este real.Să se arate că valoarea minimă a volumului corpului obținut prin rotația în jurul axei Ox a graficului funcției h:[0,1]R h(x)=f(ax) este de pentru orice x

V(

=

Astfel am obținut o funcție de gradul al doilea, iar minimul ei este . După înlocuiri și calcule făcute rezultatul este tocmai .

6)Dându-se funcția f:[0,1]R f(x)=mx+5 , aflați m real astfel încât volumul corpului obținut prin rotirea în jurul lui Ox a subgraficului lui f să fie minim.

V(=+5m+25)

Volumul este minim pentru m=

Bibliografie:

Săndulescu F., Solymoși M.,Nica C., Matematică, bacalaureat-teste, Ed. Booklet, București, 2012


Articole asemanatoare relatate:
Articole asemanatoare mai vechi:

 

Revista cu ISSN

Programa pentru limba slovaca materna la…

Programa pentru limba slovacă maternă la Evaluarea Naţională 2014   Vezi programa pentru disciplina limba şi literatura slovacă maternă pentru Evaluarea Naţională pentru elevii clasei a VIII-a în 2014, anexa nr.2 la OMEN...

Read more

Calendarul olimpiadelor si concursurilor…

Calendarul olimpiadelor si concursurilor scolare internationale 2015   Vezi Calendarul olimpiadelor si concursurilor scolare internationale desfasurate in Romania si in strainatate pentru anul scolar 2014-2015, respectiv: activitatea, tara/localitatea si perioada.

Read more

Inscrierea in clasa pregatitoare si clas…

Inscrierea in clasa pregatitoare si clasa intai informatii pentru parinti   Incepand de marti, 2 aprilie 2013, in scolile din Romania incep inscrierile in invatamantul primar: inscrierile la clasa pregatitoare si clasa...

Read more

Eficienta fiselor cu continut geometric …

STUDIU PRIVIND EFICIENŢA FIŞELOR CU CONŢINUT GEOMETRIC PENTRU ÎNSUŞIREA DIFERITELOR NOŢIUNI MATEMATICE Prof. ȋnv. primar Andrei Alexandra, Şcoala Gimnazială Nr. 1...

Read more

Activitatea diferentiata reteta succesul…

ACTIVITATEA DIFERENŢIATĂ  REŢETA SUCCESULUI ÎNVĂŢĂRII ŞCOLARE    Înv. Marc Aurica Şcoala Gimnazială Câmpeni   Preocuparea majoră a fiecărui dascăl trebuie să fie cunoaşterea reală a personalităţii elevilor cu care lucrează, ceea ce îl ajută în...

Read more

Spune NU drogurilor - tipuri de droguri …

Spune NU drogurilor - tipuri de droguri - hasis, marihuana

1.     Haşişul şi marihuana   Droguri din această categorie de substanţe:  Cannabis-ul este denumirea generică pentru produsele vegetale obţinute din cânepa de cultură (cannabis sativa) plantă ce conţine substanţe halucinogene (compusul psihoactiv...

Read more

Copilul in familie

  COPILUL ÎN FAMILIE Prof. înv. primar Gligor Dana Școala Gimnazială Cîmpeni Socializarea constituie procesul de continuă transformare a individului "din ființă biologică într-un subiect al unei culturi specifice" (Bernstein, Buc....

Read more

TERAPIA LOGOPEDICA IN GRADINITA

TERAPIA LOGOPEDICÃ ÎN GRÃDINIŢÃ   Educatoare: Rãtoiu Victoria Şcoala cu clasele I - VIII, G.P.N. Nr. 1, Corabia     Lucrarea de fata îsi propune sã prezinte terapia logopedicã din grãdinitã cu scopul de a...

Read more