Choose your screen resolution: Auto adjust 800x600 1024x768


Metoda inductiei complete
Luni, 24 Ianuarie 2011 18:04

METODA INDUCŢIEI COMPLETE

 

Profesor Ene Steluţa

 Şcoala Miron Costin, Galaţi

 

În geometrie, ca şi în domeniul multor altor ştiinţe, primele adevă­ruri matematice au fost obţinute pe calea observaţiei şi experienţei, deci pe calea inducţiei. La început, pe bază de experienţă prin observaţii şi măsurători, vechii egipteni au stabilit aproximativ raportul dintre lungimea cercului şi diametrul lui. Când numărul adevărurilor geometrice stabilite pe această cale a devenit mai mare, s-a putut observa între ele anumite legături, iar lucrările unor mari matematicieni din antichitate, ca: Tales, Pitagora, Euclid, Arhimede etc., care au folosit diferite forme de raţionament în obţinerea rezultatelor, au transformat geometria dintr-o ştiinţă empirică în una deductivă.

 

Inducţie vine de la un cuvânt de origine latină ,,inductionis”, care tradus înseamnă ,,aducere", „introducere", „dovedirea prin exem­ple", „orientare spre". În logică, prin inducţie se înţelege o formă de raţionament în care gândirea noastră pleacă de la particular la general, sau de la cunoştinţe cu un grad de generalitate mai mic la cunoştinţe cu un grad de gene­ralitate mai mare. În procesul generalizării prin raţionamentul inductiv întâlnim două cazuri.


Primul caz este acela în care obţinem o concluzie generală des­pre o anumită mulţime de obiecte de acelaşi fel pe baza cercetărilor tuturor elementelor ei. De exemplu, în geometria plană pentru de­monstrarea teoremei - ,,măsura unui unghi înscris într-un cerc este egală cu jumătatea măsurii arcului cuprins între laturile sale” – se procedează astfel: mulţimea unghiurilor înscrise în cerc se împarte în trei clase, singurele posibile :

a) unghiuri înscrise în care o latură este diametrul cercului şi cealaltă o coardă;

b) unghiuri înscrise cu laturile situate de aceeaşi parte a centrului cercului;

c) unghiuri înscrise în care laturile sunt coarde situate de o parte şi de alta a centrului cercului.

Se demonstrează teorema pentru fiecare din aceste clase de unghiuri, se însumează rezultatele obţinute într-un singur tot, obţinându-se o concluzie generală.

Acest fel de raţionament se numeşte „inducţie completă". El nu trebuie confundat cu metoda „inducţiei complete", care se mai numeşte şi „inducţia matematică", despre care ştim că este o formă raţionamentului deductiv.

Al doilea caz de generalizare pe cale inductivă este acela în care concluzia despre o clasă de obiecte se obţine pe baza studiului care nu cuprinde toate obiectele clasei care se cercetează, acest fel de raţionament se numeşte inducţie necompletă. În matematică sunt cazuri când inducţia necompletă duce la generalizări greşite.

Raţionamentul inductiv este folosit mult de gândirea omenească pentru descoperirea legilor ştiinţifice, în elaborarea ipotezelor ştiinţifice etc.

În geometrie, inducţia o întâlnim sub două forme: ca metodă de cercetare şi ca metodă de demonstraţie.

Inducţia ca metodă de cercetare constă în faptul că prin observaţie şi experienţă se pot formula anumite ipoteze referitoare la unele proprietăţi ale figurilor geometrice, iar ca aceste proprietăţi probabile să devină adevăruri matematice trebuie demonstrate. Ca metodă de demonstraţie, inducţia este cunoscută sub numele de „metoda inducţiei matematice".

La baza raţionamentului inducţiei matematice stă axioma a cincea a şirului natural al numerelor, care constituie şi conţinutul acestei metode.

,,Dacă o proprietate oarecare, legată de numerele naturale, este adevărată pentru un număr natural a şi dacă, presupunând că ea este adevărată pentru un număr oarecare n, este adevărată şi pentru numărul n +1 atunci este adevărată pentru toate numerele naturale începând de la a”.

În demonstraţie, metoda inducţiei matematice se efectuează în două etape.

I. Etapa de verificare

Se verifică dacă propoziţia enunţată este adevărată pentru numărul natural a.

II. Etapa de demonstraţie

Aceasta constă în a arăta că, presupunând adevărată propoziţia enunţată pentru numărul n  a, atunci ea este adevărată şi pentru numărul n + 1.

Pentru obţinerea concluziilor juste este necesar ca ambele etape să fie aplicate.

Metoda inducţiei matematice poate fi aplicată atât în problemele de calcul cât şi în problemele de demonstraţie.

 

Bibliografie

Gh. A. Chiţei, Metode pentru rezolvarea problemelor de geometrie, EDP, Bucureşti, 1969

 

 

Ultima actualizare în Miercuri, 02 Februarie 2011 10:08
 

Adaugă comentariu


Codul de securitate
Actualizează

Revista cu ISSN

Situatiile de criza educationala din cla…

SITUAȚIILE DE CRIZĂ EDUCAȚIONALĂ DIN CLASA DE ELEVI Prof. Surlaru Daniela Colegial Agricol ”Dr. C. Angelescu” Buzau Definirea unei situații de criză împune un apel justificat...

Read more

Modele de cereri miscarea cadrelor didac…

Modele de cereri – mişcarea cadrelor didactice 2011-2012    Acord pentru detaşare în interesul învăţământului în anul şcolar 2011-2012    Cerere de detaşare la cerere prin concurs specific   Cerere de înscriere la concursul de ocupare...

Read more

European Education Fain editia a treia

European Education Fair la cea de-a treia editie     IEC - International Education Center Romania invită elevii si studentii romani interesati de studiile in strainatate la cea de-a treia editie a...

Read more

Spune Nu drogurilor - tipuri de droguri …

4.     Amfetamine   Amfetaminele: aceste substanţe simpatomimetice sunt derivaţi ai adrenalinei (epinefrinei) la care predomină efectele excitatoare centrale. De aceea sunt numite şi "amine de trezire" sau "amine tonifiante".   Preparate înregistrate de...

Read more

Felul complementului in noua gramatica a…

FELUL COMPLEMENTULUI ÎN NOUA GRAMATICĂ ACADEMICĂ Profesor Ciobanu Elena-Corina Liceul Teoretic Buziaș, Timiș Noua gramatică academică[1], lansată la începutul anului 2006, ne prezintă fenomenele lingvistice care aparţin gramaticii cuvântului...

Read more

Evaluarea activitatii personalului didac…

Evaluarea activitatii personalului didactic si didactic auxiliar - ordin nr. 3597/18.06.2014 – modificari si completari Vezi Ordin nr. 3597/18.06.2014 pentru modificarea si completarea Metodologiei de evaluare anuala a activitatii personalului...

Read more

Eficienta pedepselor si recompenselor in…

EFICIENȚA PEDEPSELOR ȘI RECOMPENSELOR ÎN REZOLVAREA SITUAȚIILOR CONFLICTUALE Prof. Maria-Lavinia Moldovan Liceul Tehnologic Băicoi Rezumat Pedepsele și recompensele au rolul „de a regla” conflictele școlare ce intervin în momentul refuzului elevului de...

Read more

Metode de interactiune educationala

METODE DE INTERACŢIUNE EDUCAŢIONALĂ                                                                                              Prof. Laura Herman                                                                                    Şcoala “Nicolae Iorga” Baia Mare   Dincolo de accentul informaţional care devine tot mai puţin monopol al şcolii, aspectul formativ şi motivaţional al acesteia se poate...

Read more